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A Boundary-Layer Problem Associated
with Magnetogasdynamic Channel Flow

F. E. C. CuLick*
California Institute of Technology, Pasadena, Calif.

N connection with the motion of electrically conducting

fluids through electric and magnetic fields, it is useful to
- consider flow in a channel as a possible means of energy ex-
traction or addition. The simplest form of analysis, based
on the familiar one-dimensional approximation, excludes the
very important influences of viscous stresses and heat flux.
Although one may account for surface friction and heat
transfer in an approximate manner as Dahlberg® has dis-
cussed, there is no possibility for computing the detailed
effects. One way of (partially) correcting this defect is based
on the idea that, for some distance downstream of the en-
trance, the immediate effects of the walls may be confined
to thin boundary regions. The central portion of the flow
is regarded as a one-dimensional problem, the solution of
which provides the “freestream’ conditions set in the bound-
ary-layer problem.

Although there have been a number of discussions of
boundary layers on plates when the fluid is electrically con-
ducting, there seems to have been much less work on problems
arising in channel flow. The closest to the present discussion
is that by Kerrebrock? and Hale,® who treat special cases;
the latter incorporates Hall currents, which are ignored
here. Moffat* has discussed the problem and used an in-
tegral method to analyze the boundary layers on the side
(insulating) walls but with the pressure constant.

The results outlined here are restricted to the necessary
conditions for the existence of a class of similarity solutions
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to a particular set of boundary-layer equations for com-
pressible flow. The formulation is based on certain assump-
tions that have been discussed in detail, for example, in Refs.
2 and 5. It is necessary only to state the conventions
adopted; the electric field E, magnetic induction B, and
“freestream’ flow speed u are positive in the negative z,
positive y, and positive z directions, respectively. The
current density 7 is then positive in the positive z direction for
a generator. It is supposed that E and B are established by
means external to the flow so that the local current density in
a generator is, for a scalar electrical conductivity,

i = owB — B) W

If the “magnetic Reynolds number” is small, then the mag-
netic field associated with the flow of currents in the gas is
small, and it is consistent to assume B to be caused essen-
tially by external means only. The corresponding assump-
tion that the electric field strength E also is due to sources
outside the flow implies that the gas should be electrically
neutral at all points. This situation often prevails because
of the large forces that arise if there is significant charge
separation. However, in the present problem, somewhat
closer examination is necessary. Consider the boundary
layers on the electrodes of a generator; away from the re-
gions near the side (insulating) walls, the current must be
uniform in the direction normal to the surface since no cur-
rent flow is permitted, within the approximations adopted
here, in the axial directions. Thus, since » and ¢ vary
through the boundary layer, Eq. (1) can be satisfied only if
E varies as well. This means that there is space charge
within the boundary layer, and the drop in potential across
the boundary layer is different from that in an equal distance
in the freestream. Equation (1), applied within the boundary
layer, is really an equation determining E. The contribu-
tion of net charge density, ¢V -E, to the current flow is a
small correction that may be neglected.

On the other hand, the electric field can be uniform within
the boundary layers on the side walls except in the regions
near the electrodes. One can suppose that the tendency to
charge neutrality does prevail and that Eq. (1) is an equa-
tion for j in the viscous region. Clearly, at all points for
which uB < E (u — 0 near the surface, of course), 7 is locally
negative, and current flows in the direction opposite to that
of the current outside the boundary layer. Hence, there
exists the possibility for closed-current loops within the
channel. The flow in the corners, where the boundary lay-
ers on the electrodes and the side walls merge, constitutes a
very much more difficult problem that has not been investi-
gated further. It may be a practically important question
because of the concomitant power losses.

The situation in an accelerator is different, for uB < E
everywhere; the current flows in the same direction at all
points. However, since |j] = ¢|E — uB| and both « and
1/ decrease in the region near the side walls, |j| must in-
crease. The flow adjacent to these walls, therefore, offers
a “short circuit” path relative to the flow in the central
region of the channel. These remarks indicate that the solu-
tions to the boundary-layer equations for the flow over the
side walls and electrodes should differ in a qualitative, as
well as quantitative, respect, and indeed, one such distinction
appears already in the similarity solutions enumerated below.

It is assumed that the fluid behaves as a perfect gas with
constant Prandtl number and specific heats. The equations
of conservation for the flow outside the boundary layers
are those appropriate to a one-dimensional flow; the cor-
responding boundary-layer equations can be deduced from
the Navier-Stokes equations written for an electrically con-
ducting fluid and may be found, for example, in Ref. 3. Fol-
lowing the usual approach, one seeks conditions under which
the boundary-layer partial differential equations may be
reduced to nonlinear, ordinary differential equations; all



NOVEMBER 1963

TECHNICAL NOTES AND COMMENTS

2667

Table 1a Summary of channel flow solutions for boundary-layer similar flows on electrodes (E. constant)
Energy equation Momentum equation
Constant, _ g A Ue _ o a(l —3n)| (bn —1) 1
enthalpy n= B A S [1 * n = 1):1 (L + a) yM,2
Constant Y Az, e _fl—a\y—1
velocity = ~Eg(1 + @) U pet. A U3 ( c ) v
Constant - _Ej Azl + o) e _ M2+ [(1 — N — a)/Ay]
Mach no. " 2hpeuAfl + [(v — 1)/21M.2 U3 M2+ [2/(y - 1))
Table 1b  Exponents § in the distribution y = y.(v /)8 by the requirements of similarity and satisfaction of the
Constant Constant Constant equations for the inviscid flow.
v enthalpy velocity M ach no. One finds eventually that, for the boundary layers on the
electrodes, there are three subclasses of the similarity solu-
¢ A tions corresponding to constant enthalpy, velocity, and Mach
e " 1+« 14+ « number. The associated channel flow solutions are summa-
. o rized in Tables 1a and 1b, in which subscript e denotes quan-
M, n — tities in the one-dimensional flow and subscript r denotes
21 + ) 1+ reference values. For the case quoted, the electric field has
1 —5n — ol 4 n) 1 -« 1—\N—« been assumed uniform, and the coefficient of viscosity is pro-
Pe 1+ o 14 « 14+ a portional to the absolute temperature; these restrictions may
be relaxed so long as E, and p, vary as powers of 2. One
, 1 —5n — ol 4 n) l—a—c 1 -3\~ « does not have complete freedom in choosing the constants
) 1te 1+a 1+« Men, and e, essentially because of the requirement that w./us
n —1 — ol + 2n) c— 14 N —1+ a >'1 in a generator anpl U,/us < 1 is an accelerator;® uy .=‘E'/
4 1+ 1+ « 1+ B is generally a function of z. A summary of the permissible
ranges appears in Table 2.
j —2[n + ol = n)] —2a —2a Calculations appropriate to the boundary layers on the
O 14+ « 1+ o side walls can be carried out in a similar manner, but account
—2a(1 — 2n) 9 —%a must be taken that the current density ig variable throt}gh
L2 1t T a T a the boundary layer. It turns out that this further require-

dependent variables are then functions of a single variable,
and the problem of solution is posed in simplest form. The
transformation used here is the familiar stretching of the
coordinate normal to the surface, z — 4, with dy =
(p/pe)t(x)dz, t(x) being a funetion of z to be determined.
Then the class of boundary-layer solutions found are those
for which the stream function has the separated form,
¢(@)f(n), with {(z) another function of  to be determined.
Simultaneously, the properties of the inviscid flow must also
be taken as functions of x consistent with the one-dimensional

ment is satisfied only by the similarity solutions for which
the ‘“freestream” Mach number is constant. Numerical
solutions for this case may, therefore, be the most interesting
of those in Table 1.

One might consider the possibility of seeking similar solu-
tions for very large values of M, by using the stagnation en-
thalpy rather than the static enthalpy as the dependent
variable in the energy equation. It is quite easy to show,
however, that there are no such solutions for M, — «. The
difficulty encountered by Kerrebrock? arises in all three
classes of solutions. No attempt has been made to treat
segmented electrodes, which is consistent with the neglect

flow equations.

The various functions of z are determined

of Hall currents.

Similarity solutions cannot be obtained if

Table 2 Summary of permissible ranges of «, n, ¢, A, for boundary-layer flows on electrodes (E, constant)

Generator (u./us >1)

Accelerator (u./us <1)

1 —
Constant enthalpy a < —1: n <0 a < —1: 0<n<5 3a
- [¢3
—1 . 1 ~a
= 1 3. a <n <0 —1<ag 41
¢ 0 <a<3g 30— 5 n a & + n>5~3a
o # —1 a> 4 n <0 1<a <% n >0
> 3 <ozl
“zs " 3a — 5
. y—1
Constant velocity a< —1: 0<c<—7——(1—a)
A=0 «> 41 ol y<e<o ~1<a<+ 1 e>Y =1y
a # £1
-1
Constant Mach number a < —1: 0<x <377-_—1 1 — «) a < —1: A<O
1 <a4l: > 2=~
3y — 1
-1
a # —1 a>+41: )\<—‘Y (a — 1) a>1 A>0
3y — 1

+ There is also a set of solutions for which all quantities in the inviscid region vary exponentially .6
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E and j vary discontinuously, but it might be possible to use
numerical solutions as a basis for an integral method, as
difficult boundary conditions have been handled in other
problems.
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Procedure for the Determination of
Impact Probabilities

D. R. Crusg*
U. 8. Naval Ordnance Test Station, China Lake, Calif.

The various steps required to determine the dis-
tribution of hits around a two-dimensional or three-
dimensional target caused by random normal errors
in the fire-control parameters are discussed. A
method is presented to express the distribution as
a function of miss distance rather than of the three

space variables.
Nomenclature
a,b,c = distribution parameters
dij = elements of D
D = n by m matrix of partial derivatives df:/0s;
D’ = transposed D matrix
fi = functions of fire-control parameters
I = integral
m = number of fire-control parameters
n = number of dimensions, 2 or 3
P = probability density function
P = g transformation matrix that yields principal axes
P’ = transposed P matrix
7 = miss distance
Si = fire-control parameters
T = w2/ s
Vsj = elements of V,
Vs = m by m variance-covariance matrix of fire-control
parameters
Ve = n by n variance-covariance matrix of impact co-
ordinates
V., = variance-covariance matrix along principal axes
s = ¢th impact coordinate
3s; = error in jth fire-control parameter
§z; = ¢th component of miss distance
dr;’ = 6; = miss distances along principal axis
(AX) = n by 1 matrix containing éz;
{AS) = m by 1 matrix containing s;
wilr) = kth moment of r about origin
oy, = variance of jth fire-control parameter

ozt = 0;* = the eigenvalues of V, = the diagonal elements of
V. = the variances along principal axes
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Introduction

HE impact coordinates of a missile as a function of fire-
control parameters may be predicted by equations of the
following form:

Xy = fi(81,82, ey Sm) 1 S 2 S n (1)
where s; represents any number of parameters, such as the
initial coordinates, velocities, time, etc. Depending on the
dimensionality of the target, n may be two or three.

A variation in the impact coordinates éz; caused by small
variations in the parameters és; may be expressed by the
following equation:

(AX) = D(AS) @)

where D is an n by m matrix, the elements of which are de-
fined by

di; = Ofi/0s; 3)

Random variations in the parameters are usually assumed
to be normally and independently distributed with mean 0
and standard deviation O Associated with these random

variations is a ‘‘variance-covariance’” matrix! », which is of
dimensions m by m and has elements defined by

Vg = 0 T ]
Vij = 032 1=7 @)

The variance-covariance matrix for the impact coordinates
is then found by a simple matrix product

V. = DV.D’ (%)

where V', is a symmetrical n by n matrix.

V. is the matrix of second moments of the probability
density function in the reference frame of the impact co-
ordinates, and in general, off-diagonal terms will appear.
It is well known in both statistics and mechanics, where such
matrices appear, that there exists a reference frame where
the off-diagonal terms will not appear. The transformation
equation takes the same form as Eq. 5.2

V.= PV.P’ ©

‘where ¥V, is a diagonal matrix and P rotates the original axes

into prinecipal axes.

The diagonal elements of V.- are the eigenvalues of V.,
and may be found by various techniques such as are described
in Todd.®* It is not necessary to find the P matrix.

The elements 0,2 02, and 6.2 (from V./) are the vari-
ances along the principal axes and completely describe the
probability distribution of hits around the target under the
forementioned assumptions.

A simplification in notation is now in order. Let o,/ =
o;® and let the ith component of miss distance along the
principal axes be denoted &; instead of éz;’.

The distribution of hits around the target may now be
written for the three-dimensional situation:

p(01,88:) = a exp{—3[(31/0)? + (82/02)* + (6/00)?]} (7)

where a is the normalizing factor that gives a unit volume
under the curve.

Analytically, the problem is completely solved but not in a
practical form on which to base human judgment, for in prac-

‘tice one is interested only in how far the target is missed and

will have no information as to the direction of the miss. So
this information must be deleted from the probability density
function above.

The direct approach is to convert to polar or spherical
coordinates and integrate out the angular dependence. The
integration is possible analytically only in the special situa-
tions where all the variances are equal. The distributions ob-



